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Abstract.   Populations of small pelagic fish are strongly influenced by climate. The inability 
of managers to anticipate environment-driven fluctuations in stock productivity or distribution 
can lead to overfishing and stock collapses, inflexible management regulations inducing shifts 
in the functional response to human predators, lost opportunities to harvest populations, 
bankruptcies in the fishing industry, and loss of resilience in the human food supply. Recent 
advances in dynamical global climate prediction systems allow for sea surface temperature 
(SST) anomaly predictions at a seasonal scale over many shelf ecosystems. Here we assess the 
utility of SST predictions at this “fishery relevant” scale to inform management, using Pacific 
sardine as a case study. The value of SST anomaly predictions to management was quantified 
under four harvest guidelines (HGs) differing in their level of integration of SST data and pre-
dictions. The HG that incorporated stock biomass forecasts informed by skillful SST predic-
tions led to increases in stock biomass and yield, and reductions in the probability of yield and 
biomass falling below socioeconomic or ecologically acceptable levels. However, to mitigate 
the risk of collapse in the event of an erroneous forecast, it was important to combine such 
forecast-informed harvest controls with additional harvest restrictions at low biomass.

Key words:   climate prediction; ecosystem-based management; fisheries management; forage fish; harvest 
guideline; Pacific sardine; seasonal forecast.

Introduction

It has long been recognized that fish populations fluc-
tuate in response to climate variability (Lehodey et  al. 
2006, Ottersen et al. 2010), with some of the most noto-
rious examples of climate effects on fisheries coming from 
small pelagic species (Soutar and Isaacs 1969, Baumgartner 
et  al. 1992, Alheit and Hagen 1997, Field et  al. 2009, 
Finney et  al. 2010). When periods of climate-driven 
reduced productivity are not recognized, continued high 
fishing rates can have catastrophic consequences, exem-
plified by the Pacific sardine fishery demise in the 1950s 
(Murphy 1966, Essington et al. 2015), or the collapse of 
the Peruvian anchoveta fishery in the 1970s (Sharp 1987). 
Climate effects of fisheries are complex, and may also be 
positive, with abundance increasing in specific areas as a 
result of increasing productivity or distributional shifts 
(Hare et  al. 2010). The inability to anticipate such 
increases in fish biomass can lead to lost income opportu-
nities and unexpected economic consequences. For 
instance, unanticipated temperature-induced changes in 
the timing of Gulf of Maine Atlantic lobster life-cycle 

transitions resulted in an extended 2012 fishing season 
and record landings, but outstripped processing capacity 
and market demand, leading to a collapse in prices and an 
economic crisis in the lobster fishery (Mills et al. 2013).

Despite the importance of climate variability in driving 
fish population dynamics, and the potentially disastrous 
consequences of not incorporating information about 
climate-driven low productivity regimes (Murphy 1966, 
Sharp 1987, Essington et al. 2015, Pershing et al. 2015, 
Pinsky and Byler 2015), management targets are largely 
set without explicitly accounting for environmental vari-
ability (Skern-Mauritzen et al. 2016). One reason for this 
is that a full understanding of the linkages between climate 
and fish population dynamics is difficult to achieve, with 
many relationships breaking down over time (Myers 
1998). Furthermore, strategic evaluations of alternative 
management strategies including environmental factors 
have reported mixed results in terms of improved man-
agement performance (Basson 1999, MacCall 2002, De 
Oliveira and Butterworth 2005, A’mar et al. 2009, Ianelli 
et al. 2011, Punt et al. 2013, Szuwalski and Punt 2013).

Recent advances in dynamical global climate forecast 
systems at the seasonal scale raise prospects for improved 
utility of these tools in developing new, forecast-informed, 
fisheries management strategies. SST forecasts at a spatial 
(i.e., coastal shelf) and temporal (i.e., monthly) scale 
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relevant to the fisheries management decision process 
have shown high predictive skill for many continental 
shelf ecosystems (Stock et  al. 2015). Such predictions 
already support more effective and proactive dynamic 
spatial management strategies of select marine resources 
(Hobday et al. 2011, 2014), and have been employed to 
improve efficiency and planning of the fishing and aqua-
culture industry (Spillman and Hobday 2014, Eveson 
et al. 2015, Spillman et al. 2015). It remains to be assessed 
if, given their uncertainty and the uncertainty of empirical 
environment–recruitment relationships, these forecasts 
can improve fisheries management performance by pro-
ducing better stock biomass estimates on which to base 
catch target decisions.

Here we develop a proof of concept integration of sea-
sonal climate forecasts into the fisheries management 
process using the Pacific sardine (Sardinops sagax) U.S. 
stock as a case study. The Pacific sardine fishery was first 
developed at the beginning of the 20th century, and by 
the 1940s it had become the largest in the Western hemi-
sphere (Schwartzlose et al. 1999). However, it dramati-
cally collapsed in the 1950s (Murphy 1966), likely due to 
a combination of overfishing and adverse environmental 
conditions (Zwolinski and Demer 2012, Lindegren et al. 
2013, Essington et al. 2015), only recovering in the late 
1990s (Zwolinski and Demer 2012). Such extreme 
biomass fluctuations were common even before the onset 
of fishing (Soutar and Isaacs 1969, Baumgartner et  al. 
1992, Field et al. 2009), and have exhibited a strong rela-
tionship with SST (Lindegren et al. 2013). Indeed, Pacific 
sardine is one of the few fisheries in the world whose 
current harvest control rule incorporates environmental 
information, SST during the three preceding years (Hill 
et al. 2010). The value of the integration of short-term 
SST predictions into the fisheries management framework 
was evaluated by comparing four control rules for setting 
harvest guidelines (HGs) differing in their level of inte-
gration of environmental and forecast information. 
These HGs are illustrated in Fig. 1 and are described fully 
in the Methods.

Methods

Sea surface temperature seasonal forecast

In the current stock assessment for Pacific sardine, the 
sardine–SST relationship depends on the mean annual 
5–15 m depth temperature obtained from the California 
Cooperative Oceanic Fisheries Investigations (CalCOFI) 
survey (Hill et al. 2010). The robust relationship between 
sardine recruitment and SST (Jacobson and MacCall 1995, 
Myers 1998, Deyle et al. 2013, Jacobson and McClatchie 
2013, Lindegren and Checkley 2013) may be a result of 
direct temperature effects on metabolism affecting larval 
growth and survival (Lluch-Belda et al. 1991), as well as 
changes in prey availability (Rykaczewski and Checkley 
2008), predation mortality (Bakun and Broad 2003), and 
larval retention (Lluch-Belda et al. 1991, Nieto et al. 2014) 

of which SST is an indirect proxy. Here, we use monthly 
SST forecasts over the same CalCOFI survey area 
(Appendix S1: Fig. S1) using the NOAA Geophysical 
Fluid Dynamics Laboratory’s (GFDL) CM 2.5 FLOR 
global climate forecast system, with coupled atmosphere, 
land, ocean, and sea ice components developed at the 
National Oceanic and Atmospheric Administration 
Geophysical Fluid Dynamics Laboratory (GFDL; Vecchi 
et al. 2014), which is part of the U.S. National Weather 
Service’s operational North American Multi-Model 
Ensemble for seasonal prediction (NMME). Its atmos-
pheric resolution is ~50  km, and its ocean resolution 1° 
(~100 km), increasing to 1/3° (~40 km) near the equator 
(Vecchi et al. 2014). This prediction system has shown SST 
prediction skill within the California Current LME (Stock 
et  al. 2015). The seasonal SST forecasts are operational 
and made publicly available every month through the 
NMME website and GFDL (both available online).8,  9 
Retrospective forecasts going back to 1982 are available 
through both the NMME and GFDL data archives (both 
available online).10,11

Briefly, to compute a forecast, the atmosphere, land, 
ocean, and sea ice are initialized globally on the first day 
of the specified initiation month. Monthly climate fore-
casts up to a 12 month lead are then computed from this 
initial climate state. Ocean and sea ice initial conditions 
are obtained from GFDL’s Ensemble Data Assimilation 
System (Zhang et al. 2007), while atmospheric and land 
conditions are estimated from a suite of SST forced 
atmosphere-land only simulations. For each forecast 

Fig.  1.  Management decision timeframe relative to data 
inputs for the three alternative harvest guidelines (HGs). The 
three-year (year, y) sea surface temperature (SST) average 
influences the exploitation rate that would produce the 
maximum sustainable yield (Emsy) used in the HG.
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8 �http://www.cpc.ncep.noaa.gov/products/NMME/
9 �http://www.gfdl.noaa.gov/cm2-5-and-flor
10 �https://www.earthsystemgrid.org/dataset/nmme.output.

html
11 �http://nomads.gfdl.noaa.gov/dods-data/NMME/
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run, 12 ensemble member forecasts are produced, each 
arising from slightly different but equally plausible initial 
conditions.

The procedures described in Stock et  al. (2015) were 
used to assess prediction skill of the ensemble mean of 
these 12 forecasts. A total of 4032 (12 initiation months × 
12 lead months × 28 yr) retrospective ensemble mean SST 
anomaly monthly forecasts from 1982 to 2009, were 
extracted from the GFDL model archive. Prediction skill 
was evaluated by computing an anomaly correlation coef-
ficient (ACC) between the forecast and monthly averaged 
daily NOAA version 2 optimally interpolated daily 
high-resolution-blended SST anomalies (OISST, Reynolds 
et al. 2007) over the same CalCOFI survey area. The same 
1982–2009 period was used to compute OISST anomalies. 
Finally, to determine the added value of the dynamical 
climate system, we compared the dynamic SST anomaly 
forecast ACC against the persistence anomaly forecast 
ACC. A persistence forecast was computed by maintaining 
the initiation month anomaly across all lead months.

Management strategy evaluation

To compare the performance of different harvest guide-
lines (HGs) including or excluding future environmental 
information, a management strategy evaluation (MSE) is 
employed (Punt and Donovan 2007). An MSE is a 
framework developed to test, through simulation mod-
elling, the efficiency of alternative management procedures 
in achieving specific management goals, taking uncertainty 
into account (Punt and Donovan 2007). It consists of 
several elements. First, an operating model to simulate the 
dynamics of the fishery population is developed. The 
second component is the management procedure, where 
one simulates a management option, such as a harvest 
guideline, based on the perceived status of the fishery (Kell 
et al. 2005). Here, we assume that the perceived population 
is the same as the “true” sardine population from the oper-
ating model and do not introduce sampling or assessment 
errors or simulate a full stock assessment. The only sources 
of uncertainty are the process uncertainty arising from 
stochasticity in recruitment and that of the SST forecast. 
Finally, management ability to achieve specific objectives 
under each alternative management procedure is eval-
uated using performance metrics (Kell et al. 2005).

The operating model

The operating model is derived from the age-structured 
cohort model used in the risk evaluation framework for 
Pacific sardine (Hurtado-Ferro and Punt 2014, PFMC 
2014); (see Appendix S1) for a more detailed description 
of the operating model. Recruits are simulated using an 
environmentally explicit Ricker stock–recruitment model 
following Jacobson and MacCall (1995) and Hurtado-
Ferro and Punt (2014). While the current sardine man-
agement uses annual CalCOFI SST as a recruitment 
covariate, here, in recognition of the elevated forecast 

skill from late winter to early summer (Fig. 2), the time 
period that is most important for sardine spawning and 
early larval survival (Lluch-Belda et  al. 1991), we use 
March SST. This was selected as the best SST predictor 
among 12 late winter to early summer potential SST 
covariates using cross-validation, with the combined 
effects of spawning stock biomass and SST explaining 
84% of the total recruitment variation (Appendix S1: Fig. 
S2). See Appendix S1 for details on the stock–recruitment 
model selection process.

As a test of operating model robustness, we verified the 
simulated spawning stock biomass (SB) with both 1981–
2008 and 1945–1965 SB estimates from the stock 
assessment (Hill et al. 2010), and MacCall (1979), respec-
tively. SB estimates were far less certain during this early 
period than more recent estimates, but extending back to 
1945 offered an opportunity to assess the model’s ability 
to simulate a population collapse (Appendix S1: Fig. S3).

The robustness of different management strategies was 
assessed by simulating, for each HG rule, the stock 
dynamics from 1945 to 2008, a time period that included 
low productivity conditions. As the hindcasts (re-
forecasts) of SST predictions only start in 1982, the oper-
ating model was driven by observed SST at Scripps Pier 
plus a forecast error. Here we used the forecast error of 
the ensemble mean of a 1-February-initialized March 
SST forecast (2-months lead) as input into the operating 
model. Forecast error was computed as the standard 
deviation (SD) of the March SST forecast residuals from 

Fig.  2.  Anomaly correlation coefficients (ACCs) as a 
function of forecast initialization month (x-axis) and lead time 
(y-axis) for the CalCOFI region. Initialization month 1 
corresponds to 1 January. Gray dots indicate ACCs significantly 
above 0 at 5% level; white downward triangles indicate ACCs 
above persistence at 10% level.
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the 1982 to 2009 hindcast. For each HG, stock dynamics 
were simulated across 1000 realizations of stochastic var-
iability in recruitment and SST forecast error, and 
tracking management performance statistics. At each 
time step, the recruitment errors and, for HG3 and HG4, 
forecast SST errors were randomly sampled from a 
normal distribution with SD equal to the SD of 
recruitment and SST prediction residuals, respectively.

Management procedure

The critical management decision assessed in this case 
study is each year’s harvest guideline (i.e., catch limit in 
tons [Mg]) specified prior to the spring fishing season. 
Catch limits are set based on an estimate of the present 
biomass age 1 and older in tons at the beginning of the 
year (Bt) obtained from a stock assessment, and Emsy, the 
exploitation rate (harvested fraction of the stock per 
year) that would provide the maximum sustainable yield: 

The HG for Pacific sardine also includes a 150 000-ton 
harvest cutoff, which was incorporated into all the HGs 
considered here. Environmental effects on stock produc-
tivity can be incorporated into the HG via changes in 
recruitment that are reflected in the Bt estimate and/or via 
a temperature dependency of Emsy, as is currently done in 
the Pacific sardine HG (Hill et al. 2010). The temperature 
dependency of Emsy, depicted in Appendix S1: Fig. S4, 
results from the underlying SST-explicit stock recruitment 
function. The Emsy-SST relationship was developed fol-
lowing the procedure of Hurtado-Ferro and Punt (2014). 
Briefly, the operating model, which has a SST-explicit 
recruitment function (Appendix S1: Eq. S3), was projected 
forward for 1000 years for a range of exploitation rates 
under a constant March SST anomaly. This process was 
repeated for a range of SST anomalies, and for each SST 
anomaly the exploitation rate that produced the maximum 
mean catch was recorded. A polynomial model was then 
fit through the SST specific-maximum exploitation rates to 
obtain an Emsy–SST relationship (Appendix S1: Fig. S4).

The first HG rule, HG1, incorporated neither past nor 
future environmental information. Emsy was constant 
and set to 0.18. This was the constant exploitation rate 
from Hurtado-Ferro and Punt (2014) that maximized 
long-term catch under a stochastic recruitment error sce-
nario. As in the current U.S. Pacific sardine HG, HG2 
casts Emsy as a function of SST anomalies over the past 
3  years (Fig.  1A). However, unlike the current Pacific 
sardine HG, we use March SST anomalies instead of 
annual SST. The third harvest guideline, HG3, moves the 
window of temperature anomaly forward to consider the 
two previous years and the predicted March SST condi-
tions (Fig. 1B), which have a forecast error reflecting the 
prediction skill of a CM 2.5 FLOR March SST anomaly 
forecast at a 2-month lead time. The forecast error was 
sampled from a normal distribution with SD equal to 

those of the residuals between the observed and model 
hindcast SST. Thus, Emsy was computed as follows at 
each time step: 

where σf 2 = 0.49, the SD of the 2-month lead forecast 
residuals.

The fourth HG, HG4, in addition to employing a 
dynamic Emsy informed by the SST prediction, also 
depended on an SST-dependent estimate of future stock 
biomass (Fig. 1C, Eq. 3). 

The temperature dependency of Bt+1 derives from the 
prediction of recruits in year t, which is driven by the SST 
anomaly prediction. Bt+1 is also dependent on catches in 
year t, determined by HGt. Solving Eq. 2 after rewriting 
Bt+1 as a function of HGt yields 

where Vt is the sum of Bt and recruit biomass in year t that 
survive natural mortality in year t, and M is the natural 
mortality, set at 0.4 yr−1. Details of the derivation of Eq. 4 
can be found in Appendix S1. Since Vt depends on a pre-
diction of recruits in year t driven by the SST anomaly 
prediction, in addition to SST forecast uncertainty being 
reflected in Emsy as described for HG3 in Eq. 2, prediction 
uncertainty was reflected in the estimation of year t 
recruits. The predicted recruits used to compute Vt were 
generated as in Appendix S1: Eq. S3, but with SST set to 

where σf 2 = 0.49, the SD of the 2-month lead forecast 
residuals.

Performance measures

We assessed the following performance metrics to 
evaluate the management performance of the different 
HGs: (1) mean and variability of yield and stock biomass; 
(2) probability of stock biomass falling below a 400,000 
tons threshold; and (3) probability of yield falling below 
a 50 000 tons threshold.

Metrics 2 and 3 reflect ecologically and economically 
important biomass or yield thresholds used in the Pacific 
sardine risk evaluation framework (PFMC 2014). The 
first reflects the minimum biomass necessary to sustain 
higher trophic levels in the ecosystem, the second the 
minimum yield required for an economically viable 
fishery. Variability of yield and stock biomass was 
measured by the population variability (PV) metric. PV 
is the average proportional difference between all combi-
nations of values in a data series, and ranges between 0 
and 1 (Heath 2006). Unlike SD or the coefficient of 

(1)HGt = (Bt−150000)Emsy.

(2)Emsy = f(March SSTt−2 to t+�f 2) �f 2 ∼N(0,�f 2)

(3)HGt =

(

(Bt+Bt+1)

2
−150000

)

Emsy.

(4)HGt =

(

(Bt+Vt)

2
−150000

)

1

(1∕Emsy)+ (e−M∕2∕2)

(5)SSTf 2 =SSTobs+�f 2 �f 2 ∼N(0,�f 2)
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variation, PV is not biased by non-Gaussian behavior 
such as heavy tailed distributions characterized by many 
rare events or zero counts (Heath 2006).

Results and Discussion

Sea surface temperature anomaly predictions over the 
CalCOFI region showed significant skill over the sardine 
spawning period of January to July (Fig. 2). Skill, i.e., 
anomaly correlation coefficient (ACC) > 0.6, was com-
monly achieved for lead times of 1 or 2 months, extended 
out to 4 months in some cases, and mainly arose from the 
reliable persistence anomalies during this period (Fig. 2; 
Appendix S1: Fig. S5). We thus considered scenarios 
where harvest guidelines going into effect in spring may 
be informed by late winter SST anomaly predictions with 
2-month leads.

The operating model of Pacific sardine dynamics was 
able to simulate the 1950s collapse, and provided an approx-
imation of the true Pacific sardine dynamics (Appendix S1: 
Fig. S4). By capitalizing on more productive periods, all the 

HGs that included environmental information, either past 
or future, led to higher long-term yield than the constant 
exploitation rate in HG1 (Fig. 3A). When, as in HG3, SST 
prediction only informed Emsy, use of the SST anomaly pre-
diction did not lead to an increase in yield as compared to 
HG2, which used only past SST observations (Fig.  3A). 
However, when the SST forecast was incorporated in both 
the Emsy estimate and the prediction of future biomass, the 
mean yield across realizations increased by 13% relative to 
HG2. The range of yields across all realizations overlapped, 
but only 14% of cases using HG4 produced yields below the 
mean of HG2.

While the average Emsy over the 64 years of simulation 
was comparable across HGs (Appendix S1: Fig. S6A), 
using a constant Emsy, as in HG1 led to more reactive 
decisions and a lower long-term yield. Severe reductions 
in catch limits only occurred once biomass declined or fell 
below the harvest cutoff (Appendix S1: Fig. S6B, C). By 
contrast, the SST informed HGs were more anticipatory, 
and reductions in catch limits followed declines in pro-
ductivity more closely (Appendix S1: Fig. S6B,  C). 

Fig. 3.  Management performance metrics for the different harvest guidelines described in the methods. The HGs incorporating 
future SST information reflect the uncertainty of a 2-month lead forecast. Error bars show the 5-95th percentile range. 1000 mt = 1 Gg.
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HG2–HG4 were also better able to take advantage of 
booms in productivity (Appendix S1: Fig. S6B, C).

It should be noted that a slight delay between reduc-
tions in catch limits and declines in productivity was still 
observed for HG2–HG4 as Emsy is based on a three-year 
running average of SST (Appendix S1: Fig. S6). The 
dependence on a running average was implemented to 
maintain a less variable catch, and hence less variable 
income, for fishers. Indeed, the more dynamic catch 
adjustments in HG2–HG4 led to higher yield variability 
than HG1 (Fig. 3C, D). It is important to note, however, 
that the larger yield variation in HG2–HG4 occurs 
around higher mean yields.

Integration of SST forecast information into Emsy 
further reduced the lag between productivity declines and 
reductions in catch limits (Appendix S1: Fig. S6). 
Nevertheless, there was no increase in yield in HG3, which 
uses a SST prediction informed Emsy, as compared to HG2 
(Fig. 3A). It has been suggested that for short-lived species, 
such as Pacific sardine, long-term average yield could 
actually be highest when the implementation of an envi-
ronment specific harvest rate is delayed by a few years 
(MacCall 2002), as in HG2. This allows for a faster 
rebuilding of the stock at the beginning of a favorable 

period, which may balance the fishing down of the stock at 
the beginning of a less productive one (MacCall 2002). On 
the other hand, by also integrating into the HG expected 
declines in stock biomass, as in HG4, the stock is not fished 
down at the beginning of a low productivity period. Thus, 
while biomass naturally declines because of environmental 
changes, the stock does not fall to as low a level.

The gain in yield with HG4 did not result in lower 
long-term mean stock biomass, which was also highest 
for HG4 (Fig. 3B). Furthermore, adoption of HG4 did 
not result in higher biomass variability as compared to 
the other HGs (Fig. 3C, D). In contrast to yield varia-
bility, biomass variability was highest for HG1. Indeed, 
under HG2–HG4, the probability of biomass falling 
below an ecologically acceptable threshold of 400 000 
tons was lower (Fig. 4A), and the fishery was closed less 
often (i.e., the probability of 0 catch was lower, Fig. 4C). 
Incorporation of environmental information allowed the 
stock to recover faster by curtailing fishing during the 
low-productivity phase. Even more promising, the 
increased yields that accompanied the proactive use of 
skillful seasonal SST forecasts in HG4 reduced the risk of 
falling below either biomass or yield thresholds by 27% 
and 5%, respectively, relative to HG2 (Fig. 4A, C).

Fig. 4.  Empirical cumulative distribution of simulated (A, B) stock biomass and (C, D) yield over the 64 000 simulated time 
steps for harvest guidelines as described in the main text. Vertical dotted lines in panels A and C refer to ecologically and economically 
important thresholds of 400 000 metric tons for biomass and 50 000 metric tons for yield. Dotted rectangles in panels A and C 
delineate the area highlighted in the subsequent panel. Dotted lines in panels B and D represent the lower tails of the empirical 
cumulative distribution for HG2 (red) and HG4 (cyan) without the low biomass cutoff. 1 mt = 1 Gg.
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We tested the robustness of the favorable results for 
HG4 in Figs. 3 and 4 to (1) removing the harvest cutoff, 
and (2) degraded SST anomaly forecast skill. A harvest 
cutoff restricting fishing during periods of low abun-
dance has been shown to be effective in reducing proba-
bility of collapse, and in maintaining high stock biomass 
with little effect on long-term yield (Essington et  al. 
2015). When the harvest cutoff was removed, HG4 
remained the best performing harvest rule for both yield 
and biomass (Appendix S1: Fig. S7). Improvements in 
management performance of the environmentally 
informed HGs as compared to HG1, the constant harvest 
rate HG, were even more dramatic, and HG1 was the 
worst performing rule also in terms of yield variability 
(Appendix S1: Fig. S7), as most HG1 runs resulted in a 
population collapse with no recovery. The inability of 
HG1 to curtail fishing rates during periods of low pro-
ductivity led to fishing down of the stock. Removal of the 
cutoff, however, led to an increased probability of 
biomass falling to very low levels and of fisheries closures 
in HG4 relative to the less aggressive HG2 strategy 
(Fig. 4B, D, dashed lines). This highlights the value of 
complementing more aggressive use of forecast infor-
mation with low biomass safeguards to prevent collapse 
in the event of an erroneous forecast.

Usefulness of a forecast is dependent on the timing of 
the management decision relative to the accuracy of the 
forecast at that time (Hobday et al. 2016). Stock assess-
ments and associated catch decisions involve a lengthy 
review process, hence a long lead time may be required 
for the forecast information to be incorporated into 
catch target decisions. For example, the stock assessment 
detailing the 2011 HG was released in December 2010, 
but was initially reviewed by the scientific and statistical 
committee in October (Hill et  al. 2010). However, the 
ability of HG4 to improve management performance as 
compared to HG2 deteriorated with decreasing SST 
forecast skill, with some of the HG4 realizations showing 
mean yields below even the lowest mean yield for HG2 
when the deviation of the SST anomaly prediction 
residuals was >0.65°C (Fig.  5). For a springtime pre-
diction in this region, such degradation of prediction 
skill occurs for lead times greater than 5  months. An 
October-initialized 6-month lead March SST forecast 
would hence be too uncertain to be included into a 
harvest recommendation. To take advantage of the 
improved management performance achieved when inte-
grating accurate forecasts at short lead times, the man-
agement process would have to become more dynamic 
(Dunn et al. 2016), allowing for rapid, frequent revisions 
of HGs when accurate climate information becomes 
available as the stock assessment review process pro-
gresses until the final HG is released. Alternatively, 
future advances in climate prediction systems allowing 
for higher forecast skill at longer lead times would permit 
their integration into current management timeframes. 
We detail how this may be done in Fig. 6, but stress that, 
for this to be feasible, climate forecast skill has to be 

adequate when the management decision is made 
(Hobday et al. 2016).

Uncertainty in predicted fish stocks not only stems 
from the climate forecast, but also from the recruitment–
environment relationship. In a hypothetical scenario, it 
was demonstrated that the environmental index has to 
explain at least ~50% of the variance in recruitment for it 
to be useful (De Oliveira and Butterworth 2005). 
Furthermore, unlike climate forecasts, which are obtained 
by a mechanistic model based on physical laws, 
recruitment–environment relationships are generally 
based on empirical statistical relationships. Such rela-
tionships may be spurious or non-stationary, and thus 
can break down over time (Myers 1998). While the rela-
tionship of Pacific sardine productivity with SST appears 
to be robust (Jacobson and MacCall 1995, Myers 1998, 
Deyle et  al. 2013, Jacobson and McClatchie 2013, 
Lindegren and Checkley 2013), SST is likely not the prox-
imate cause of recruitment fluctuations, but rather a 
proxy for complex changes in spawning habitat availa-
bility, trophic dynamics, larval retention, or a combi-
nation thereof (Lluch-Belda et al. 1991, Rykaczewski and 
Checkley 2008, Nieto et al. 2014). Our results are predi-
cated upon the operating model, and hence on the 
assumption that SST is a robust indicator of changes in 
recruitment. If HG4 would be incorporated into the man-
agement framework, this relationship should be fre-
quently tested, using cross validation methods (Francis 
2006), to ensure its continued validity.

The results here presented assume that the observed 
abundance is equal to the true abundance, that is, we 
assume there is no assessment error. It was outside of the 
scope of the paper, but before introducing the proposed 
HG into the Pacific sardine assessment, future work will 
assess the robustness of these results to uncertainty in 
stock assessment. In particular, there is uncertainty in the 

Fig.  5.  Mean long-term yield across the 1000 realizations 
for HG4 with varying level of forecast uncertainty. Uncertainty 
refers to the SD of the residuals between the forecast and 
observed SST. Results from HG2 are included for comparison. 
The vertical gray line corresponds to the 5% percentile of the 
mean yield across the 1000 realizations computed for HG2. 
Error bars show the 5-95th percentile range.
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terminal biomass estimate on which the current Pacific 
sardine HG is based (Hill et al. 2010). This stems from 
both estimation and structural uncertainty, which is 
manifested in the retrospective pattern observed for both 
biomass and recruitment estimates (Hill et  al. 2010). 
Consideration of this source of uncertainty may further 
reduce differences between HG1, HG2, and HG3 if the 
differences in Emsy estimation are swamped by the large 

uncertainty in biomass. Furthermore, as the assessment 
error reflected in the biomass estimate may be further 
amplified in the biomass forecast informed by the SST 
prediction, the improvements in management perfor-
mance here observed under HG4 may be reduced. To 
account for such uncertainty as well as feedbacks between 
assessment errors and state dynamics, future analyses 
will need to include the full Pacific sardine stock 

Fig. 6.  Conceptual diagram outlining how the SST forecast would be implemented operationally into the fisheries management 
framework for HG4. See Methods for details on how Bt, Bt+1, and Emsy are computed. Note that monthly SST forecasts are already 
currently operational and released every month by climate prediction centers. They are available from http://www.cpc.ncep.noaa.
gov/products/NMME/
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assessment model in the management strategy evaluation 
(Wiedenmann et al. 2015, Punt et al. 2016).

Conclusions

This study provides the first proof of concept of how 
climate forecasts may be used to inform the quintessential 
decision of fisheries managers: to assess how many fish to 
catch while maintaining long-term sustainability of the 
stock. Results show that a skillful climate forecast has the 
potential to make management of highly variable forage 
fish stocks more effective. Using future SST information 
to anticipate variations in biomass led to more effective 
catch targets. Improvements in average catch when the 
catch target is based on a short-term prediction of recruits 
have also been demonstrated for anchovy using hypo-
thetical data and a hypothetical environment–recruitment 
relationship, as long as the environment is well predicted 
and the relationship between the environment and 
recruits robust (De Oliveira and Butterworth 2005). We 
have suggested it as achievable based on existing 
short-term SST forecasts and existing relationships 
between sardines and SST.

While the incorporation of climate forecast infor-
mation into harvest guidelines appears promising, 
caution is also needed. Making a forecast implies being 
wrong some of the time. We show that combining 
forecast-informed harvest controls with additional 
harvest restrictions provides a means of modulating this 
risk. Furthermore, a robust relationship between 
recruitment and the environment has to be present, and 
be frequently retested while the underlying mechanisms 
driving recruitment change are investigated. Finally, 
forecast accuracy has to be high, and with a lead time 
adequate for the management time-frame. Future human 
population growth and climate change will place 
increased pressure on marine ecosystems (Rice and 
Garcia 2011). Seasonal climate forecasts, which are reg-
ularly made and distributed by many centers around the 
world, may provide an additional tool to better manage 
fish stocks in a variable environment and maintain their 
long-term resilience while not foregoing yield.
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